
mpi4py-fft Documentation
Release 2.0.5

Mikael Mortensen and Lisandro Dalcin

Apr 24, 2024

CONTENTS:

1 mpi4py-fft 1
1.1 Introduction . 1
1.2 Global Redistributions . 2
1.3 Discrete Fourier Transforms . 8
1.4 Parallel Fast Fourier Transforms . 11
1.5 Storing datafiles . 16
1.6 Installation . 20
1.7 How to cite? . 21
1.8 How to contribute? . 21
1.9 Indices and tables . 22

i

ii

CHAPTER

ONE

MPI4PY-FFT

mpi4py-fft is a Python package for computing Fast Fourier Transforms (FFTs). Large arrays are distributed and com-
munications are handled under the hood by MPI for Python (mpi4py). To distribute large arrays we are using a new and
completely generic algorithm that allows for any index set of a multidimensional array to be distributed. We can dis-
tribute just one index (a slab decomposition), two index sets (pencil decomposition) or even more for higher-dimensional
arrays.

In mpi4py-fft there is also included a Python interface to the FFTW library. This interface can be used without MPI,
much like pyfftw, and even for real-to-real transforms, like discrete cosine or sine transforms.

1.1 Introduction

The Python package mpi4py-fft is a tool primarily for working with Fast Fourier Transforms (FFTs) of (large) multidi-
mensional arrays. There is really no limit as to how large the arrays can be, just as long as there is sufficient computing
powers available. Also, there are no limits as to how transforms can be configured. Just about any combination of trans-
forms from the FFTW library is supported. Finally, mpi4py-fft can also be used simply to distribute and redistribute
large multidimensional arrays with MPI, without any transforms at all.

The main contribution of mpi4py-fft can be found in just a few classes in the main modules:

• mpifft

• pencil

• distarray

• libfft

• fftw

The mpifft.PFFT class is the major entry point for most users. It is a highly configurable class, which under the hood
distributes large dataarrays and performs any type of transform, along any axes of a multidimensional array.

The pencil module is responsible for global redistributions through MPI. However, this module is rarely used on its
own, unless one simply needs to do global redistributions without any transforms at all. The pencil module is used
heavily by the PFFT class.

The distarraymodule contains classes for simply distributing multidimensional arrays, with no regards to transforms.
The distributed arrays created from the classes here can very well be used in any MPI application that requires a large
multidimensional distributed array.

The libfft module provides a common interface to any of the serial transforms in the FFTW library.

1

https://mpi4py-fft.readthedocs.io/en/latest/?badge=latest
https://arxiv.org/abs/1804.09536
https://arxiv.org/abs/1804.09536
http://www.fftw.org
https://hgomersall.github.io/pyFFTW/
https://github.com/mpi4py/mpi4py-fft
http://www.fftw.org

mpi4py-fft Documentation, Release 2.0.5

The fftw module contains wrappers to the transforms provided by the FFTW library. We provide our own wrappers
mainly because pyfftw does not include support for real-to-real transforms. Through the interface in fftw we can do
here, in Python, pretty much everything that you can do in the original FFTW library.

1.2 Global Redistributions

In high performance computing large multidimensional arrays are often distributed and shared amongst a large num-
ber of different processors. Consider a large three-dimensional array of double (64 bit) precision and global shape
(512, 1024, 2048). To lift this array into RAM requires 8 GB of memory, which may be too large for a single, non-
distributed machine. If, however, you have access to a distributed architecture, you can split the array up and share it
between, e.g., four CPUs (most supercomputers have either 2 or 4 GB of memory per CPU), which will only need to
hold 2 GBs of the global array each. Moreover, many algorithms with varying degrees of locality can take advantage of
the distributed nature of the array to compute local array pieces concurrently, effectively exploiting multiple processor
resources.

There are several ways of distributing a large multidimensional array. Two such distributions for our three-dimensional
global array (using 4 processors) are shown below

Here each color represents one of the processors. We note that in the first image only one of the three axes is distributed,
whereas in the second two axes are distributed. The first configuration corresponds to a slab, whereas the second
corresponds to a pencil distribution. With either distribution only one quarter of the large, global array needs to be kept
in rapid (RAM) memory for each processor, which is great. However, some operations may then require data that is not
available locally in its quarter of the total array. If that is so, the processors will need to communicate with each other
and send the necessary data where it is needed. There are many such MPI routines designed for sending and receiving
data.

We are generally interested in algorithms, like the FFT, that work on the global array, along one axis at the time. To

2 Chapter 1. mpi4py-fft

http://www.fftw.org
https://github.com/pyFFTW/pyFFTW

mpi4py-fft Documentation, Release 2.0.5

be able to execute such algorithms, we need to make sure that the local arrays have access to all of its data along this
axis. For the figure above, the slab distribution gives each processor data that is fully available along two axes, whereas
the pencil distribution only has data fully available along one axis. Rearranging data, such that it becomes aligned in a
different direction, is usually termed a global redistribution, or a global transpose operation. Note that with mpi4py-fft
we always require that at least one axis of a multidimensional array remains aligned (non-distributed).

Distribution and global redistribution is in mpi4py-fft handled by three classes in the pencil module:

• Pencil

• Subcomm

• Transfer

These classes are the low-level backbone of the higher-level PFFT and DistArray classes. To use these low-level
classes directly is not recommended and usually not necessary. However, for clarity we start by describing how these
low-level classes work together.

Lets first consider a 2D dataarray of global shape (8, 8) that will be distributed along axis 0. With a high level API we
could then simply do:

import numpy as np
from mpi4py_fft import DistArray
N = (8, 8)
a = DistArray(N, [0, 1])

where the [0, 1] list decides that the first axis can be distributed, whereas the second axis is using one processor only
and as such is aligned (non-distributed). We may now inspect the low-level Pencil class associated with a:

p0 = a.pencil

The p0 Pencil object contains information about the distribution of a 2D dataarray of global shape (8, 8). The dis-
tributed array a has been created using the information that is in p0, and p0 is used by a to look up information about
the global array, for example:

>>> a.alignment
1
>>> a.global_shape
(8, 8)
>>> a.subcomm
(<mpi4py.MPI.Cartcomm at 0x10cc14a68>, <mpi4py.MPI.Cartcomm at 0x10e028690>)
>>> a.commsizes
[1, 1]

Naturally, the sizes of the communicators will depend on the number of processors used to run the program. If we used
4, then a.commsizes would return [1, 4].

We note that a low-level approach to creating such a distributed array would be:

import numpy as np
from mpi4py_fft.pencil import Pencil, Subcomm
from mpi4py import MPI
comm = MPI.COMM_WORLD
N = (8, 8)
subcomm = Subcomm(comm, [0, 1])
p0 = Pencil(subcomm, N, axis=1)
a0 = np.zeros(p0.subshape)

1.2. Global Redistributions 3

mpi4py-fft Documentation, Release 2.0.5

Note that this last array a0 would be equivalent to a, but it would be a pure Numpy array (created on each processor)
and it would not contain any of the information about the global array that it is part of (global_shape, pencil,
subcomm, etc.). It contains the same amount of data as a though and a0 is as such a perfectly fine distributed array.
Used together with p0 it contains exactly the same information as a.

Since at least one axis needs to be aligned (non-distributed), a 2D array can only be distributed with one processor
group. If we wanted to distribute the second axis instead of the first, then we would have done:

a = DistArray(N, [1, 0])

With the low-level approach we would have had to use axis=0 in the creation of p0, as well as [1, 0] in the creation
of subcomm. Another way to get the second pencil, that is aligned with axis 0, is to create it from p0:

p1 = p0.pencil(0)

Now the p1 object will represent a (8, 8) global array distributed in the second axis.

Lets create a complete script (pencils.py) that fills the array a with the value of each processors rank (note that it
would also work to follow the low-level approach and use a0):

import numpy as np
from mpi4py_fft import DistArray
from mpi4py import MPI
comm = MPI.COMM_WORLD
N = (8, 8)
a = DistArray(N, [0, 1])
a[:] = comm.Get_rank()
print(a.shape)

We can run it with:

mpirun -np 4 python pencils.py

and obtain the printed results from the last line (print(a.shape)):

(2, 8)
(2, 8)
(2, 8)
(2, 8)

The shape of the local a arrays is (2, 8) on all 4 processors. Now assume that we need these data aligned in the x-
direction (axis=0) instead. For this to happen we need to perform a global redistribution. The easiest approach is then
to execute the following:

b = a.redistribute(0)
print(b.shape)

which would print the following:

(8, 2)
(8, 2)
(8, 2)
(8, 2)

Under the hood the global redistribution is executed with the help of the Transfer class, that is designed to transfer
data between any two sets of pencils, like those represented by p0 and p1. With low-level API a transfer object may be
created using the pencils and the datatype of the array that is to be sent:

4 Chapter 1. mpi4py-fft

mpi4py-fft Documentation, Release 2.0.5

transfer = p0.transfer(p1, np.float)

Executing the global redistribution is then simply a matter of:

a1 = np.zeros(p1.subshape)
transfer.forward(a, a1)

Now it is important to realise that the global array does not change. The local a1 arrays will now contain the same data
as a, only aligned differently. However, the exchange is not performed in-place. The new array is as such a copy of the
original that is aligned differently. Some images, Fig. 1.1 and Fig. 1.2, can be used to illustrate:

Fig. 1.1: Original 4 pencils (p0) of shape (2, 8) aligned in y-direction. Color represents rank.

Fig. 1.2: 4 pencils (p1) of shape (8, 2) aligned in x-direction after receiving data from p0. Data is the same as in Fig.
1.1, only aligned differently.

Mathematically, we will denote the entries of a two-dimensional global array as 𝑢𝑗0,𝑗1 , where 𝑗0 ∈ j0 = [0, 1, . . . , 𝑁0−
1] and 𝑗1 ∈ j1 = [0, 1, . . . , 𝑁1 − 1]. The shape of the array is then (𝑁0, 𝑁1). A global array 𝑢𝑗0,𝑗1 distributed in the
first axis (as shown in Fig. 1.1) by processor group 𝑃 , containing |𝑃 | processors, is denoted as

𝑢𝑗0/𝑃,𝑗1

The global redistribution, from alignment in axis 1 to alignment in axis 0, as from Fig. 1.1 to Fig. 1.2 above, is denoted
as

𝑢𝑗0,𝑗1/𝑃
1→0←−−−
𝑃

𝑢𝑗0/𝑃,𝑗1

This operation corresponds exactly to the forward transfer defined above:

1.2. Global Redistributions 5

mpi4py-fft Documentation, Release 2.0.5

transfer.forward(a0, a1)

If we need to go the other way

𝑢𝑗0/𝑃,𝑗1
0→1←−−−
𝑃

𝑢𝑗0,𝑗1/𝑃

this corresponds to:

transfer.backward(a1, a0)

Note that the directions (forward/backward) here depends on how the transfer object is created. Under the hood all
transfers are executing calls to MPI.Alltoallw.

1.2.1 Multidimensional distributed arrays

The procedure discussed above remains the same for any type of array, of any dimensionality. With mpi4py-fft we can
distribute any array of arbitrary dimensionality using any number of processor groups. We only require that the number
of processor groups is at least one less than the number of dimensions, since one axis must remain aligned. Apart from
this the distribution is completely configurable through the classes in the pencil module.

We denote a global 𝑑-dimensional array as 𝑢𝑗0,𝑗1,...,𝑗𝑑−1
, where 𝑗𝑚 ∈ j𝑚 for 𝑚 = [0, 1, . . . , 𝑑− 1]. A 𝑑-dimensional

array distributed with only one processor group in the first axis is denoted as 𝑢𝑗0/𝑃,𝑗1,...,𝑗𝑑−1
. If using more than one

processor group, the groups are indexed, like 𝑃0, 𝑃1 etc.

Lets illustrate using a 4-dimensional array with 3 processor groups. Let the array be aligned only in axis 3 first
(𝑢𝑗0/𝑃0,𝑗1/𝑃1,𝑗2/𝑃2,𝑗3), and then redistribute for alignment along axes 2, 1 and finally 0. Mathematically, we will now
be executing the three following global redistributions:

𝑢𝑗0/𝑃0,𝑗1/𝑃1,𝑗2,𝑗3/𝑃2

3→2←−−−
𝑃2

𝑢𝑗0/𝑃0,𝑗1/𝑃1,𝑗2/𝑃2,𝑗3

𝑢𝑗0/𝑃0,𝑗1,𝑗2/𝑃1,𝑗3/𝑃2

2→1←−−−
𝑃1

𝑢𝑗0/𝑃0,𝑗1/𝑃1,𝑗2,𝑗3/𝑃2

𝑢𝑗0,𝑗1/𝑃0,𝑗2/𝑃1,𝑗3/𝑃2

1→0←−−−
𝑃0

𝑢𝑗0/𝑃0,𝑗1,𝑗2/𝑃1,𝑗3/𝑃2

(1.1)

Note that in the first step it is only processor group 𝑃2 that is active in the redistribution, and the output (left hand side)
is now aligned in axis 2. This can be seen since there is no processor group there to share the 𝑗2 index. In the second
step processor group 𝑃1 is the active one, and in the final step 𝑃0.

Now, it is not necessary to use three processor groups just because we have a four-dimensional array. We could just
as well have been using 2 or 1. The advantage of using more groups is that you can then use more processors in total.
Assuming 𝑁 = 𝑁0 = 𝑁1 = 𝑁2 = 𝑁3, you can use a maximum of 𝑁𝑝 processors, where 𝑝 is the number of processor
groups. So for an array of shape (8, 8, 8, 8) it is possible to use 8, 64 and 512 number of processors for 1, 2 and 3
processor groups, respectively. On the other hand, if you can get away with it, or if you do not have access to a great
number of processors, then fewer groups are usually found to be faster for the same number of processors in total.

We can implement the global redistribution using the high-level DistArray class:

N = (8, 8, 8, 8)
a3 = DistArray(N, [0, 0, 0, 1])
a2 = a3.redistribute(2)
a1 = a2.redistribute(1)
a0 = a1.redistribute(0)

Note that the three redistribution steps correspond exactly to the three steps in (1.1).

Using a low-level API the same can be achieved with a little more elaborate coding. We start by creating pencils for
the 4 different alignments:

6 Chapter 1. mpi4py-fft

https://www.mpich.org/static/docs/v3.2/www3/MPI_Alltoallw.html

mpi4py-fft Documentation, Release 2.0.5

subcomm = Subcomm(comm, [0, 0, 0, 1])
p3 = Pencil(subcomm, N, axis=3)
p2 = p3.pencil(2)
p1 = p2.pencil(1)
p0 = p1.pencil(0)

Here we have defined 4 different pencil groups, p0, p1, p2, p3, aligned in axis 0, 1, 2 and 3, respectively. Transfer
objects for arrays of type np.float are then created as:

transfer32 = p3.transfer(p2, np.float)
transfer21 = p2.transfer(p1, np.float)
transfer10 = p1.transfer(p0, np.float)

Note that we can create transfer objects between any two pencils, not just neighbouring axes. We may now perform
three different global redistributions as:

a0 = np.zeros(p0.subshape)
a1 = np.zeros(p1.subshape)
a2 = np.zeros(p2.subshape)
a3 = np.zeros(p3.subshape)
a0[:] = np.random.random(a0.shape)
transfer32.forward(a3, a2)
transfer21.forward(a2, a1)
transfer10.forward(a1, a0)

Storing this code under pencils4d.py, we can use 8 processors that will give us 3 processor groups with 2 processors
in each group:

mpirun -np 8 python pencils4d.py

Note that with the low-level approach we can now easily go back using the reverse backward method of the Transfer
objects:

transfer10.backward(a0, a1)

A different approach is also possible with the high-level API:

a0.redistribute(out=a1)
a1.redistribute(out=a2)
a2.redistribute(out=a3)

which corresponds to the backward transfers. However, with the high-level API the transfer objects are created (and
deleted on exit) during the call to redistribute and as such this latter approach may be slightly less efficient.

1.2. Global Redistributions 7

mpi4py-fft Documentation, Release 2.0.5

1.3 Discrete Fourier Transforms

Consider first two one-dimensional arrays 𝑢 = {𝑢𝑗}𝑁−1
𝑗=0 and �̂� = {�̂�𝑘}𝑁−1

𝑘=0 . We define the forward and backward
Discrete Fourier transforms (DFT), respectively, as

�̂�𝑘 =
1

𝑁

𝑁−1∑︁
𝑗=0

𝑢𝑗𝑒
−2𝜋𝑖𝑗𝑘/𝑁 , ∀ 𝑘 ∈ k = 0, 1, . . . , 𝑁 − 1,

𝑢𝑗 =

𝑁−1∑︁
𝑘=0

�̂�𝑘𝑒
2𝜋𝑖𝑗𝑘/𝑁 , ∀ 𝑗 ∈ j = 0, 1, . . . , 𝑁 − 1,

(1.2)

where 𝑖 =
√
−1. Discrete Fourier transforms are computed efficiently using algorithms termed Fast Fourier Trans-

forms, known in short as FFTs.

Note: The index set for wavenumbers k is usually not chosen as [0, 1, . . . , 𝑁 − 1], but k = [−𝑁/2,−𝑁/2 −
1, . . . , 𝑁/2−1] for even 𝑁 and k = [−(𝑁 −1)/2,−(𝑁 −1)/2+1, . . . , (𝑁 −1)/2] for odd 𝑁 . See numpy.fft.fftfreq.
Also note that it is possible to tweak the default normalization used above when calling either forward or backward
transforms.

A more compact notation is commonly used for the DFTs, where the 1D forward and backward transforms are written
as

�̂� = ℱ(𝑢),
𝑢 = ℱ−1(�̂�).

Numpy, Scipy, and many other scientific softwares contain implementations that make working with Fourier series
simple and straight forward. These 1D Fourier transforms can be implemented easily with just Numpy as, e.g.:

import numpy as np
N = 16
u = np.random.random(N)
u_hat = np.fft.fft(u)
uc = np.fft.ifft(u_hat)
assert np.allclose(u, uc)

However, there is a minor difference. Numpy performs by default the 1/𝑁 scaling with the backward transform (ifft)
and not the forward as shown in (1.2). These are merely different conventions and not important as long as one is aware
of them. We use the scaling on the forward transform simply because this follows naturally when using the harmonic
functions 𝑒𝑖𝑘𝑥 as basis functions when solving PDEs with the spectral Galerkin method or the spectral collocation
method (see chap. 3).

With mpi4py-fft the same operations take just a few more steps, because instead of executing ffts directly, like in the
calls for np.fft.fft and np.fft.ifft, we need to create the objects that are to do the transforms first. We need to
plan the transforms:

from mpi4py_fft import fftw
u = fftw.aligned(N, dtype=np.complex)
u_hat = fftw.aligned_like(u)
fft = fftw.fftn(u, flags=(fftw.FFTW_MEASURE,)) # plan fft
ifft = fftw.ifftn(u_hat, flags=(fftw.FFTW_ESTIMATE,)) # plan ifft
u[:] = np.random.random(N)
Now execute the transforms

(continues on next page)

8 Chapter 1. mpi4py-fft

https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.fft.fftfreq.html#numpy.fft.fftfreq
https://github.com/spectralDNS/shenfun
https://people.maths.ox.ac.uk/trefethen/spectral.html
https://people.maths.ox.ac.uk/trefethen/spectral.html

mpi4py-fft Documentation, Release 2.0.5

(continued from previous page)

u_hat = fft(u, u_hat, normalize=True)
uc = ifft(u_hat)
assert np.allclose(uc, u)

The planning of transforms makes an effort to find the fastest possible transform of the given kind. See more in The
fftw module.

1.3.1 Multidimensional transforms

It is for multidimensional arrays that it starts to become interesting for the current software. Multidimensional arrays
are a bit tedious with notation, though, especially when the number of dimensions grow. We will stick with the index
notation because it is most straightforward in comparison with implementation.

We denote the entries of a two-dimensional array as 𝑢𝑗0,𝑗1 , which corresponds to a row-major matrix 𝑢 =
{𝑢𝑗0,𝑗1}(𝑗0,𝑗1)∈j0×j1 of size 𝑁0 · 𝑁1. Denoting also 𝜔𝑚 = 𝑗𝑚𝑘𝑚/𝑁𝑚, a two-dimensional forward and backward
DFT can be defined as

�̂�𝑘0,𝑘1
=

1

𝑁0

∑︁
𝑗0∈j0

(︁
𝑒−2𝜋𝑖𝜔0

1

𝑁1

∑︁
𝑗1∈j1

(︁
𝑒−2𝜋𝑖𝜔1𝑢𝑗0,𝑗1

)︁)︁
, ∀ (𝑘0, 𝑘1) ∈ k0 × k1,

𝑢𝑗0,𝑗1 =
∑︁
𝑘1∈k1

(︁
𝑒2𝜋𝑖𝜔1

∑︁
𝑘0∈k0

(︁
𝑒2𝜋𝑖𝜔0 �̂�𝑘0,𝑘1

)︁)︁
, ∀ (𝑗0, 𝑗1) ∈ j0 × j1.

(1.3)

Note that the forward transform corresponds to taking the 1D Fourier transform first along axis 1, once for each of the
indices in j0. Afterwords the transform is executed along axis 0. The two steps are more easily understood if we break
things up a little bit and write the forward transform in (1.3) in two steps as

�̃�𝑗0,𝑘1
=

1

𝑁1

∑︁
𝑗1∈j1

𝑢𝑗0,𝑗1𝑒
−2𝜋𝑖𝜔1 , ∀ 𝑘1 ∈ k1,

�̂�𝑘0,𝑘1
=

1

𝑁0

∑︁
𝑗0∈j0

�̃�𝑗0,𝑘1
𝑒−2𝜋𝑖𝜔0 , ∀ 𝑘0 ∈ k0.

(1.4)

The backward (inverse) transform if performed in the opposite order, axis 0 first and then 1. The order is actually
arbitrary, but this is how is is usually computed. With mpi4py-fft the order of the directional transforms can easily be
configured.

We can write the complete transform on compact notation as

�̂� = ℱ(𝑢),
𝑢 = ℱ−1(�̂�).

(1.5)

But if we denote the two partial transforms along each axis as ℱ0 and ℱ1, we can also write it as

�̂� = ℱ0(ℱ1(𝑢)),

𝑢 = ℱ−1
1 (ℱ−1

0 (�̂�)).
(1.6)

Extension to multiple dimensions is straight forward. We denote a 𝑑-dimensional array as 𝑢𝑗0,𝑗1,...,𝑗𝑑−1
and a partial

transform of 𝑢 along axis 𝑖 is denoted as

�̃�𝑗0,...,𝑘𝑖,...,𝑗𝑑−1
= ℱ𝑖(𝑢𝑗0,...,𝑗𝑖,...,𝑗𝑑−1

) (1.7)

We get the complete multidimensional transforms on short form still as (1.5), and with partial transforms as

�̂� = ℱ0(ℱ1(. . .ℱ𝑑−1(𝑢)),

𝑢 = ℱ−1
𝑑−1(ℱ

−1
𝑑−2(. . .ℱ

−1
0 (�̂�))).

(1.8)

Multidimensional transforms are straightforward to implement in Numpy

1.3. Discrete Fourier Transforms 9

https://en.wikipedia.org/wiki/Index_notation
https://en.wikipedia.org/wiki/Index_notation

mpi4py-fft Documentation, Release 2.0.5

import numpy as np
M, N = 16, 16
u = np.random.random((M, N))
u_hat = np.fft.rfftn(u)
uc = np.fft.irfftn(u_hat)
assert np.allclose(u, uc)

1.3.2 The fftw module

The fftw module provides an interface to most of the FFTW library. In the fftw.xfftn submodule there are planner
functions for:

• fftn() - complex-to-complex forward Fast Fourier Transforms

• ifftn() - complex-to-complex backward Fast Fourier Transforms

• rfftn() - real-to-complex forward FFT

• irfftn() - complex-to-real backward FFT

• dctn() - real-to-real Discrete Cosine Transform (DCT)

• idctn() - real-to-real inverse DCT

• dstn() - real-to-real Discrete Sine Transform (DST)

• idstn() - real-to-real inverse DST

• hfftn() - complex-to-real forward FFT with Hermitian symmetry

• ihfftn() - real-to-complex backward FFT with Hermitian symmetry

All these transform functions return instances of one of the classes fftwf_xfftn.FFT, fftw_xfftn.FFT or
fftwl_xfftn.FFT, depending on the requested precision being single, double or long double, respectively. Except
from precision, the tree classes are identical. All transforms are non-normalized by default. Note that all these functions
are planners. They do not execute the transforms, they simply return an instance of a class that can do it (see docstrings
of each function for usage). For quick reference, the 2D transform shown for Numpy can be done using fftw as:

from mpi4py_fft.fftw import rfftn as plan_rfftn, irfftn as plan_irfftn
from mpi4py_fft.fftw import FFTW_ESTIMATE
rfftn = plan_rfftn(u.copy(), flags=(FFTW_ESTIMATE,))
irfftn = plan_irfftn(u_hat.copy(), flags=(FFTW_ESTIMATE,))
u_hat = rfftn(uc, normalize=True)
uu = irfftn(u_hat)
assert np.allclose(uu, uc)

Note that since all the functions in the above list are planners, an extra step is required in comparison with Numpy.
Also note that we are using copies of the u and u_hat arrays in creating the plans. This is done because the provided
arrays will be used under the hood as work arrays for the rfftn() and irfftn() functions, and the work arrays may
be destroyed upon creation.

The real-to-real transforms are by FFTW defined as one of (see definitions and extended definitions)

• FFTW_REDFT00

• FFTW_REDFT01

• FFTW_REDFT10

• FFTW_REDFT11

10 Chapter 1. mpi4py-fft

http://www.fftw.org
http://www.fftw.org/fftw3_doc/Real_002dto_002dReal-Transform-Kinds.html#Real_002dto_002dReal-Transform-Kinds
http://www.fftw.org/fftw3_doc/What-FFTW-Really-Computes.html#What-FFTW-Really-Computes

mpi4py-fft Documentation, Release 2.0.5

• FFTW_RODFT00

• FFTW_RODFT01

• FFTW_RODFT10

• FFTW_RODFT11

Different real-to-real cosine and sine transforms may be combined into one object using factory.
get_planned_FFT() with a list of different transform kinds. However, it is not possible to combine, in one
single object, real-to-real transforms with real-to-complex. For such transforms more than one object is required.

1.4 Parallel Fast Fourier Transforms

Parallel FFTs are computed through a combination of global redistributions and serial transforms. In mpi4py-fft the
interface to performing such parallel transforms is the mpifft.PFFT class. The class is highly configurable and best
explained through a few examples.

1.4.1 Slab decomposition

With slab decompositions we use only one group of processors and distribute only one index of a multidimensional
array at the time.

Consider the complete transform of a three-dimensional array of random numbers, and of shape (128, 128, 128). We
can plan the transform of such an array with the following code snippet:

import numpy as np
from mpi4py import MPI
from mpi4py_fft import PFFT, newDistArray
N = np.array([128, 128, 128], dtype=int)
fft = PFFT(MPI.COMM_WORLD, N, axes=(0, 1, 2), dtype=np.float, grid=(-1,))

Here the signature N, axes=(0, 1, 2), dtype=np.float, grid=(-1,) tells us that the created fft instance
is planned such as to slab distribute (along first axis) and transform any 3D array of shape N and type np.float.
Furthermore, we plan to transform axis 2 first, and then 1 and 0, which is exactly the reverse order of axes=(0, 1,
2). Mathematically, the planned transform corresponds to

�̃�𝑗0/𝑃,𝑘1,𝑘2
= ℱ1(ℱ2(𝑢𝑗0/𝑃,𝑗1,𝑗2)),

�̃�𝑗0,𝑘1/𝑃,𝑘2

1→0←−−−
𝑃

�̃�𝑗0/𝑃,𝑘1,𝑘2
,

�̂�𝑘0,𝑘1/𝑃,𝑘2
= ℱ0(�̃�𝑗0,𝑘1/𝑃,𝑘2

).

Note that axis 0 is distributed on the input array and axis 1 on the output array. In the first step above we compute
the transforms along axes 2 and 1 (in that order), but we cannot compute the serial transform along axis 0 since the
global array is distributed in that direction. We need to perform a global redistribution, the middle step, that realigns
the global data such that it is aligned in axes 0. With data aligned in axis 0, we can perform the final transform ℱ0 and
be done with it.

Assume now that all the code in this section is stored to a file named pfft_example.py, and add to the above code:

u = newDistArray(fft, False)
u[:] = np.random.random(u.shape).astype(u.dtype)
u_hat = fft.forward(u, normalize=True) # Note that normalize=True is default and can be␣
→˓omitted

(continues on next page)

1.4. Parallel Fast Fourier Transforms 11

mpi4py-fft Documentation, Release 2.0.5

(continued from previous page)

uj = np.zeros_like(u)
uj = fft.backward(u_hat, uj)
assert np.allclose(uj, u)
print(MPI.COMM_WORLD.Get_rank(), u.shape)

Running this code with two processors (mpirun -np 2 python pfft_example.py) should raise no exception, and
the output should be:

1 (64, 128, 128)
0 (64, 128, 128)

This shows that the first index has been shared between the two processors equally. The array u thus corresponds to
𝑢𝑗0/𝑃,𝑗1,𝑗2 . Note that the newDistArray() function returns a DistArray object, which in turn is a subclassed Numpy
ndarray. The newDistArray() function uses fft to determine the size and type of the created distributed array, i.e.,
(64, 128, 128) and np.float for both processors. The False argument indicates that the shape and type should be
that of the input array, as opposed to the output array type (�̂�𝑘0,𝑘1/𝑃,𝑘2

that one gets with True).

Note that because the input array is of real type, and not complex, the output array will be of global shape:

128, 128, 65

The output array will be distributed in axis 1, so the output array shape should be (128, 64, 65) on each processor. We
check this by adding the following code and rerunning:

u_hat = newDistArray(fft, True)
print(MPI.COMM_WORLD.Get_rank(), u_hat.shape)

leading to an additional print of:

1 (128, 64, 65)
0 (128, 64, 65)

To distribute in the first axis first is default and most efficient for row-major C arrays. However, we can easily configure
the fft instance by modifying the axes keyword. Changing for example to:

fft = PFFT(MPI.COMM_WORLD, N, axes=(2, 0, 1), dtype=np.float)

and axis 1 will be transformed first, such that the global output array will be of shape (128, 65, 128). The distributed
input and output arrays will now have shape:

0 (64, 128, 128)
1 (64, 128, 128)

0 (128, 33, 128)
1 (128, 32, 128)

Note that the input array will still be distributed in axis 0 and the output in axis 1. This order of distribution can be
tweaked using the grid keyword. Setting grid=(1, 1, -1) will force the last axis to be distributed on the input array.

Another way to tweak the distribution is to use the Subcomm class directly:

from mpi4py_fft.pencil import Subcomm
subcomms = Subcomm(MPI.COMM_WORLD, [1, 0, 1])
fft = PFFT(subcomms, N, axes=(0, 1, 2), dtype=np.float)

12 Chapter 1. mpi4py-fft

mpi4py-fft Documentation, Release 2.0.5

Here the subcomms tuple will decide that axis 1 should be distributed, because the only zero in the list [1, 0, 1] is
along axis 1. The ones determine that axes 0 and 2 should use one processor each, i.e., they should be non-distributed.

The PFFT class has a few additional keyword arguments that one should be aware of. The default behaviour of PFFT
is to use one transform object for each axis, and then use these sequentially. Setting collapse=True will attempt to
minimize the number of transform objects by combining whenever possible. Take our example, the array 𝑢𝑗0/𝑃,𝑗1,𝑗2

can transform along both axes 1 and 2 simultaneously, without any intermediate global redistributions. By setting
collapse=True only one object of rfftn(u, axes=(1, 2)) will be used instead of two (like fftn(rfftn(u,
axes=2), axes=1)). Note that a collapse can also be configured through the axes keyword, using:

fft = PFFT(MPI.COMM_WORLD, N, axes=((0,), (1, 2)), dtype=np.float)

will collapse axes 1 and 2, just like one would obtain with collapse=True.

If serial transforms other than fftn()/rfftn() and ifftn()/irfftn() are required, then this can be achieved using
the transforms keyword and a dictionary pointing from axes to the type of transform. We can for example combine
real-to-real with real-to-complex transforms like this:

from mpi4py_fft.fftw import rfftn, irfftn, dctn, idctn
import functools
dct = functools.partial(dctn, type=3)
idct = functools.partial(idctn, type=3)
transforms = {(0,): (rfftn, irfftn), (1, 2): (dct, idct)}
r2c = PFFT(MPI.COMM_WORLD, N, axes=((0,), (1, 2)), transforms=transforms)
u = newDistArray(r2c, False)
u[:] = np.random.random(u.shape).astype(u.dtype)
u_hat = r2c.forward(u)
uj = np.zeros_like(u)
uj = r2c.backward(u_hat, uj)
assert np.allclose(uj, u)

As a more complex example consider a 5-dimensional array where for some reason you need to perform discrete cosine
transforms in axes 1 and 2, discrete sine transforms in axes 3 and 4, and a regular Fourier transform in the first axis.
Here it makes sense to collapse the (1, 2) and (3, 4) axes, which leaves only the first axis uncollapsed. Hence we can
then only use one processor group and a slab decomposition, whereas without collapsing we could have used four
groups. A parallel transform object can be created and tested as:

N = (5, 6, 7, 8, 9)
dctn = functools.partial(fftw.dctn, type=3)
idctn = functools.partial(fftw.idctn, type=3)
dstn = functools.partial(fftw.dstn, type=3)
idstn = functools.partial(fftw.idstn, type=3)
fft = PFFT(MPI.COMM_WORLD, N, ((0,), (1, 2), (3, 4)), grid=(-1,),

transforms={(1, 2): (dctn, idctn), (3, 4): (dstn, idstn)})

A = newDistArray(fft, False)
A[:] = np.random.random(A.shape)
C = fftw.aligned_like(A)
B = fft.forward(A)
C = fft.backward(B, C)
assert np.allclose(A, C)

1.4. Parallel Fast Fourier Transforms 13

mpi4py-fft Documentation, Release 2.0.5

1.4.2 Pencil decomposition

A pencil decomposition uses two groups of processors. Each group then is responsible for distributing one index
set each of a multidimensional array. We can perform a pencil decomposition simply by running the first example
from the previous section, but now with 4 processors. To remind you, we put this in pfft_example.py, where now
grid=(-1,) has been removed in the PFFT calling:

import numpy as np
from mpi4py import MPI
from mpi4py_fft import PFFT, newDistArray

N = np.array([128, 128, 128], dtype=int)
fft = PFFT(MPI.COMM_WORLD, N, axes=(0, 1, 2), dtype=np.float)
u = newDistArray(fft, False)
u[:] = np.random.random(u.shape).astype(u.dtype)
u_hat = fft.forward(u)
uj = np.zeros_like(u)
uj = fft.backward(u_hat, uj)
assert np.allclose(uj, u)
print(MPI.COMM_WORLD.Get_rank(), u.shape)

The output of running mpirun -np 4 python pfft_example.py will then be:

0 (64, 64, 128)
2 (64, 64, 128)
3 (64, 64, 128)
1 (64, 64, 128)

Note that now both the two first index sets are shared, so we have a pencil decomposition. The shared input array is
now denoted as 𝑢𝑗0/𝑃0,𝑗1/𝑃1,𝑗2 and the complete forward transform performs the following 5 steps:

�̃�𝑗0/𝑃0,𝑗1/𝑃1,𝑘2
= ℱ2(𝑢𝑗0/𝑃0,𝑗1/𝑃1,𝑗2),

�̃�𝑗0/𝑃0,𝑗1,𝑘2/𝑃1

2→1←−−−
𝑃1

�̃�𝑗0/𝑃0,𝑗1/𝑃1,𝑘2
,

�̃�𝑗0/𝑃0,𝑘1,𝑘2/𝑃1
= ℱ1(�̃�𝑗0/𝑃0,𝑗1,𝑘2/𝑃1

),

�̃�𝑗0,𝑘1/𝑃0,𝑘2/𝑃1

1→0←−−−
𝑃0

�̃�𝑗0/𝑃0,𝑘1,𝑘2/𝑃1
,

�̂�𝑘0,𝑘1/𝑃0,𝑘2/𝑃1
= ℱ0(�̃�𝑗0,𝑘1/𝑃0,𝑘2/𝑃1

).

Like for the slab decomposition, the order of the different steps is configurable. Simply change the value of axes, e.g.,
as:

fft = PFFT(MPI.COMM_WORLD, N, axes=(2, 0, 1), dtype=np.float)

and the input and output arrays will be of shape:

3 (64, 128, 64)
2 (64, 128, 64)
1 (64, 128, 64)
0 (64, 128, 64)

3 (64, 32, 128)
2 (64, 32, 128)
1 (64, 33, 128)
0 (64, 33, 128)

14 Chapter 1. mpi4py-fft

mpi4py-fft Documentation, Release 2.0.5

We see that the input array is aligned in axis 1, because this is the direction transformed first.

1.4.3 Convolution

Working with Fourier one sometimes need to transform the product of two or more functions, like

̂︀𝑎𝑏𝑘 =

∫︁ 2𝜋

0

𝑎𝑏𝑒−𝑖𝑘𝑥𝑑𝑥, ∀𝑘 ∈ [−𝑁/2, . . . , 𝑁/2− 1] (1.9)

computed with DFT as

̂︀𝑎𝑏𝑘 =
1

𝑁

𝑁−1∑︁
𝑗=0

𝑎𝑗𝑏𝑗𝑒
−2𝜋𝑖𝑗𝑘/𝑁 , ∀ 𝑘 ∈ [−𝑁/2, . . . , 𝑁/2− 1]. (1.10)

Note: We are here assuming an even number 𝑁 and use wavenumbers centered around zero.

If 𝑎 and 𝑏 are two Fourier series with their own coefficients:

𝑎 =

𝑁/2−1∑︁
𝑝=−𝑁/2

�̂�𝑝𝑒
𝑖𝑝𝑥,

𝑏 =

𝑁/2−1∑︁
𝑞=−𝑁/2

�̂�𝑞𝑒
𝑖𝑞𝑥,

(1.11)

then we can insert for the two sums from (1.11) in (1.9) and get

̂︀𝑎𝑏𝑘 =

∫︁ 2𝜋

0

⎛⎝ 𝑁/2−1∑︁
𝑝=−𝑁/2

�̂�𝑝𝑒
𝑖𝑝𝑥

𝑁/2−1∑︁
𝑞=−𝑁/2

�̂�𝑞𝑒
𝑖𝑞𝑥

⎞⎠ 𝑒−𝑖𝑘𝑥𝑑𝑥, ∀ 𝑘 ∈ [−𝑁/2, . . . , 𝑁/2− 1]

̂︀𝑎𝑏𝑘 =

𝑁/2−1∑︁
𝑝=−𝑁/2

𝑁/2−1∑︁
𝑞=−𝑁/2

�̂�𝑝�̂�𝑞

∫︁ 2𝜋

0

𝑒−𝑖(𝑝+𝑞−𝑘)𝑥𝑑𝑥, ∀ 𝑘 ∈ [−𝑁/2, . . . , 𝑁/2− 1]

(1.12)

The final integral is 2𝜋 for 𝑝+ 𝑞 = 𝑘 and zero otherwise. Consequently, we get

̂︀𝑎𝑏𝑘 = 2𝜋

𝑁/2−1∑︁
𝑝=−𝑁/2

𝑁/2−1∑︁
𝑞=−𝑁/2

�̂�𝑝�̂�𝑞𝛿𝑝+𝑞,𝑘, ∀ 𝑘 ∈ [−𝑁/2, . . . , 𝑁/2− 1] (1.13)

Unfortunately, the convolution sum (1.13) is very expensive to compute, and the direct application of (1.10) leads to
aliasing errors. Luckily there is a fast approach that eliminates aliasing as well.

The fast, alias-free, approach makes use of the FFT and zero-padded coefficient vectors. The idea is to zero-pad �̂� and
�̂� in spectral space such that we get the extended sums

𝐴𝑗 =

𝑀/2−1∑︁
𝑝=−𝑀/2

ˆ̂𝑎𝑝𝑒
2𝜋𝑖𝑝𝑗/𝑀 ,

𝐵𝑗 =

𝑀/2−1∑︁
𝑞=−𝑀/2

ˆ̂
𝑏𝑞𝑒

2𝜋𝑖𝑞𝑗/𝑀 ,

where 𝑀 > 𝑁 and where the coefficients have been zero-padded such that

ˆ̂𝑎𝑝 =

{︃
�̂�𝑝, ∀|𝑝| ≤ 𝑁/2

0, ∀|𝑝|𝑁/2

1.4. Parallel Fast Fourier Transforms 15

mpi4py-fft Documentation, Release 2.0.5

Now compute the nonlinear term in the larger physical space and compute the convolution as

̂︀𝑎𝑏𝑘 =
1

𝑀

𝑀−1∑︁
𝑗=0

𝐴𝑗𝐵𝑗𝑒
−2𝜋𝑖𝑘𝑗/𝑀 , ∀ 𝑘 ∈ [−𝑀/2, . . . ,𝑀/2− 1] (1.14)

Finally, truncate the vector ̂︀𝑎𝑏𝑘 to the original range 𝑘 ∈ [−𝑁/2, . . . , 𝑁/2−1], simply by eliminating all the wavenum-
bers higher than |𝑁/2|.

With mpi4py-fft we can compute this convolution using the padding keyword of the PFFT class:

import numpy as np
from mpi4py_fft import PFFT, newDistArray
from mpi4py import MPI

comm = MPI.COMM_WORLD
N = (128, 128) # Global shape in physical space
fft = PFFT(comm, N, padding=[1.5, 1.5], dtype=np.complex)

Create arrays in normal spectral space
a_hat = newDistArray(fft, True)
b_hat = newDistArray(fft, True)
a_hat[:] = np.random.random(a_hat.shape) + np.random.random(a_hat.shape)*1j
b_hat[:] = np.random.random(a_hat.shape) + np.random.random(a_hat.shape)*1j

Transform to real space with padding
a = newDistArray(fft, False)
b = newDistArray(fft, False)
assert a.shape == (192//comm.Get_size(), 192)
a = fft.backward(a_hat, a)
b = fft.backward(b_hat, b)

Do forward transform with truncation
ab_hat = fft.forward(a*b)

Note: The padded instance of the PFFT class is often used in addition to a regular non-padded class. The padded
version is then used to handle non-linearities, whereas the non-padded takes care of the rest, see demo.

1.5 Storing datafiles

mpi4py-fft works with regular Numpy arrays. However, since arrays in parallel can become very large, and the arrays
live on multiple processors, we require parallel IO capabilities that goes beyond Numpys regular methods. In the
mpi4py_fft.io module there are two helper classes for dumping dataarrays to either HDF5 or NetCDF format:

• HDF5File

• NCFile

Both classes have one write and one read method that stores or reads data in parallel. A simple example of usage is:

from mpi4py import MPI
import numpy as np
from mpi4py_fft import PFFT, HDF5File, NCFile, newDistArray

(continues on next page)

16 Chapter 1. mpi4py-fft

https://github.com/mpi4py/mpi4py-fft/blob/master/examples/spectral_dns_solver.py
https://www.hdf5.org
https://www.unidata.ucar.edu/software/netcdf/

mpi4py-fft Documentation, Release 2.0.5

(continued from previous page)

N = (128, 256, 512)
T = PFFT(MPI.COMM_WORLD, N)
u = newDistArray(T, forward_output=False)
v = newDistArray(T, forward_output=False, val=2)
u[:] = np.random.random(u.shape)
Store by first creating output files
fields = {'u': [u], 'v': [v]}
f0 = HDF5File('h5test.h5', mode='w')
f1 = NCFile('nctest.nc', mode='w')
f0.write(0, fields)
f1.write(0, fields)
v[:] = 3
f0.write(1, fields)
f1.write(1, fields)

Note that we are here creating two datafiles h5test.h5 and nctest.nc, for storing in HDF5 or NetCDF4 formats
respectively. Normally, one would be satisfied using only one format, so this is only for illustration. We store the fields
u and v on three different occasions, so the datafiles will contain three snapshots of each field u and v.

Also note that an alternative and perhaps simpler approach is to just use the write method of each distributed array:

u.write('h5test.h5', 'u', step=2)
v.write('h5test.h5', 'v', step=2)
u.write('nctest.nc', 'u', step=2)
v.write('nctest.nc', 'v', step=2)

The two different approaches can be used on the same output files.

The stored dataarrays can also be retrieved later on:

u0 = newDistArray(T, forward_output=False)
u1 = newDistArray(T, forward_output=False)
u0.read('h5test.h5', 'u', 0)
u1.read('h5test.h5', 'u', 1)
or alternatively for netcdf
#u0.read('nctest.nc', 'u', 0)
#u1.read('nctest.nc', 'u', 1)

Note that one does not have to use the same number of processors when retrieving the data as when they were stored.

It is also possible to store only parts of the, potentially large, arrays. Any chosen slice may be stored, using a global view
of the arrays. It is possible to store both complete fields and slices in one single call by using the following appraoch:

f2 = HDF5File('variousfields.h5', mode='w')
fields = {'u': [u,

(u, [slice(None), slice(None), 4]),
(u, [5, 5, slice(None)])],

'v': [v,
(v, [slice(None), 6, slice(None)])]}

f2.write(0, fields)
f2.write(1, fields)

Alternatively, one can use the write method of each field with the global_slice keyword argument:

1.5. Storing datafiles 17

mpi4py-fft Documentation, Release 2.0.5

u.write('variousfields.h5', 'u', 2)
u.write('variousfields.h5', 'u', 2, global_slice=[slice(None), slice(None), 4])
u.write('variousfields.h5', 'u', 2, global_slice=[5, 5, slice(None)])
v.write('variousfields.h5', 'v', 2)
v.write('variousfields.h5', 'v', 2, global_slice=[slice(None), 6, slice(None)])

In the end this will lead to an hdf5-file with groups:

variousfields.h5/
u/

| 1D/
| | 5_5_slice/
| | 0
| | 1
| | 3
| 2D/
| | slice_slice_4/
| | 0
| | 1
| | 2
| 3D/
| | 0
| | 1
| | 2
| mesh/
| x0
| x1
| x2

v/
2D/

| slice_6_slice/
| 0
| 1
| 2

3D/
| 0
| 1
| 2

mesh/
x0
x1
x2

Note that a mesh is stored along with each group of data. This mesh can be given in two different ways when creating
the datafiles:

1) A sequence of 2-tuples, where each 2-tuple contains the (origin, length) of the domain along its dimension. For
example, a uniform mesh that originates from the origin, with lengths 𝜋, 2𝜋, 3𝜋, can be given when creating the
output file as:

f0 = HDF5File('filename.h5', domain=((0, pi), (0, 2*np.pi), (0, 3*np.pi)))

or, using the write method of the distributed array:

(continues on next page)

18 Chapter 1. mpi4py-fft

mpi4py-fft Documentation, Release 2.0.5

(continued from previous page)

u.write('filename.h5', 'u', 0, domain=((0, pi), (0, 2*np.pi), (0, 3*np.pi)))

2) A sequence of arrays giving the coordinates for each dimension. For example:

d = (np.arange(N[0], dtype=np.float)*1*np.pi/N[0],
np.arange(N[1], dtype=np.float)*2*np.pi/N[1],
np.arange(N[2], dtype=np.float)*2*np.pi/N[2])

f0 = HDF5File('filename.h5', domain=d)

With NetCDF4 the layout is somewhat different. For variousfields above, if we were using NCFile instead of
HDF5File, we would get a datafile that with ncdump -h variousfields.nc would look like:

netcdf variousfields {
dimensions:

time = UNLIMITED ; // (3 currently)
x = 128 ;
y = 256 ;
z = 512 ;

variables:
double time(time) ;
double x(x) ;
double y(y) ;
double z(z) ;
double u(time, x, y, z) ;
double u_slice_slice_4(time, x, y) ;
double u_5_5_slice(time, z) ;
double v(time, x, y, z) ;
double v_slice_6_slice(time, x, z) ;

}

1.5.1 Postprocessing

Dataarrays stored to HDF5 files can be visualized using both Paraview and Visit, whereas NetCDF4 files can at the
time of writing only be opened with Visit.

To view the HDF5-files we first need to generate some light-weight xdmf -files that can be understood by both Paraview
and Visit. To generate such files, simply throw the module io.generate_xdmf on the HDF5-files:

from mpi4py_fft.io import generate_xdmf
generate_xdmf('variousfields.h5')

This will create a number of xdmf-files, one for each group that contains 2D or 3D data:

variousfields.xdmf
variousfields_slice_slice_4.xdmf
variousfields_slice_6_slice.xdmf

These files can be opened directly in Paraview. However, note that for Visit, one has to generate the files using:

generate_xdmf('variousfields.h5', order='visit')

because for some reason Paraview and Visit require the mesh in the xdmf-files to be stored in opposite order.

1.5. Storing datafiles 19

https://www.paraview.org
https://www.visitusers.org
https://www.visitusers.org

mpi4py-fft Documentation, Release 2.0.5

1.6 Installation

Mpi4py-fft has a few dependencies

• mpi4py

• FFTW (serial)

• numpy

• cython (build dependency)

• h5py (runtime dependency, optional)

• netCDF4 (runtime dependency, optional)

that are mostly straight-forward to install, or already installed in most Python environments. The first two are usually
most troublesome. Basically, for mpi4py you need to have a working MPI installation, whereas FFTW is available
on most high performance computer systems. If you are using conda, then all you need to install a fully functional
mpi4py-fft, with all the above dependencies, is

conda install -c conda-forge mpi4py-fft h5py=*=mpi*

You probably want to install into a fresh environment, though, which can be achieved with

conda create --name mpi4py-fft -c conda-forge mpi4py-fft
conda activate mpi4py-fft

Note that this gives you mpi4py-fft with default settings. This means that you will probably get the openmpi backend.
To make a specific choice of backend just specify which, like this

conda create --name mpi4py-fft -c conda-forge mpi4py-fft mpich

If you do not use conda, then you need to make sure that MPI and FFTW are installed by some other means. You can
then install any version of mpi4py-fft hosted on pypi using pip

pip install mpi4py-fft

whereas the following will install the latest version from github

pip install git+https://github.com/mpi4py/mpi4py-fft@master

You can also build mpi4py-fft yourselves from the top directory, after cloning or forking

pip install .

or using conda-build with the recipes in folder conf/

conda build -c conda-forge conf/
conda create --name mpi4py-fft -c conda-forge mpi4py-fft --use-local
conda activate mpi4py-fft

20 Chapter 1. mpi4py-fft

https://github.com/mpi4py/mpi4py
http://www.fftw.org
https://www.numpy.org
http://cython.org
https://www.h5py.org
http://unidata.github.io/netcdf4-python/
https://github.com/mpi4py/mpi4py
http://www.fftw.org
https://conda.io/docs/
https://conda.io/docs/
https://pypi.org/project/shenfun/
https://pypi.org/project/pip/
https://conda.io/docs/commands/build/conda-build.html

mpi4py-fft Documentation, Release 2.0.5

1.6.1 Additional dependencies

For storing and retrieving data you need either HDF5 or netCDF4, compiled with support for MPI. Both are available
with parallel support on conda-forge and can be installed into the current conda environment as

conda install -c conda-forge h5py=*=mpi* netcdf4=*=mpi*

Note that parallel HDF5 and NetCDF4 often are available as optimized modules on supercomputers. Otherwise, see
the respective packages for how to install with support for MPI.

1.6.2 Test installation

After installing (from source) it may be a good idea to run all the tests located in the tests folder. A range of tests
may be run using the runtests.sh script

conda install scipy, coverage
cd tests/
./runtests.sh

This test-suit is run automatically on every commit to github, see, e.g.,

1.7 How to cite?

Please cite mpi4py-fft using

@article{jpdc_fft,
author = {{Dalcin, Lisandro and Mortensen, Mikael and Keyes, David E}},
year = {{2019}},
title = {{Fast parallel multidimensional FFT using advanced MPI}},
journal = {{Journal of Parallel and Distributed Computing}},
doi = {10.1016/j.jpdc.2019.02.006}

}
@electronic{mpi4py-fft,

author = {{Lisandro Dalcin and Mikael Mortensen}},
title = {{mpi4py-fft}},
url = {{https://github.com/mpi4py/mpi4py-fft}}

}

1.8 How to contribute?

Mpi4py-fft is an open source project and anyone is welcome to contribute. An easy way to get started is by suggesting
a new enhancement on the issue tracker. If you have found a bug, then either report this on the issue tracker, er even
better, make a fork of the repository, fix the bug and then create a pull request to get the fix into the master branch.

1.7. How to cite? 21

https://www.hdfgroup.org
http://unidata.github.io/netcdf4-python/
https://conda-forge.org
https://dev.azure.com/mpi4py/mpi4py-fft
https://github.com/mpi4py/mpi4py-fft/issues
https://github.com/mpi4py/mpi4py-fft/pulls

mpi4py-fft Documentation, Release 2.0.5

1.9 Indices and tables

• genindex

• modindex

• search

22 Chapter 1. mpi4py-fft

	mpi4py-fft
	Introduction
	Global Redistributions
	Multidimensional distributed arrays

	Discrete Fourier Transforms
	Multidimensional transforms
	The fftw module

	Parallel Fast Fourier Transforms
	Slab decomposition
	Pencil decomposition
	Convolution

	Storing datafiles
	Postprocessing

	Installation
	Additional dependencies
	Test installation

	How to cite?
	How to contribute?
	Indices and tables

